CS395T: Continuous Algorithms, Part XIII
Generalized linear models

Kevin Tian

1 Proper loss functions

In this lecture, we explore the use of optimization techniques for supervised learning, a basic prob-
lem setting in machine learning applications. In supervised learning, there is a distribution D over
X x Y C R% x R. The marginal of the first d coordinates, denoted Dy, represents features x asso-
ciated with an example (e.g., height, length, temperature, and so on). Moreover, the conditional
distribution of the last coordinate, denoted Dy, represents the label y of the example. In the
common case of binary classification, where ) = {0, 1}, the label is usually used to indicate some
quality that we want to predict (e.g., whether an image is a dog or a cat). Implicit in this setup
is the belief that y is a dependent variable predicted by the features x.

We are primarily interested in learning models that can be use for predicting future unlabeled
examples from their features. In a standard supervised learning setting, we first draw examples
{(%i, %) Yiepn) ~iia. D, and we want to learn a predictor f : X — R that is predictive of Eyop, [y]-
This lecture primarily focuses on the binary classification setting, although in principle, many of
the techniques we develop can be used for more general supervised learning setups. In particular,
we discuss extensions to the multiclass prediction setting when they are relevant.

Realizable and agnostic learning. Fix some choice of distribution D over X x) where X C R¢
and Y = {0, 1}, as well as a family of classifiers C. We assume each ¢ € C is a function ¢: X — R.
For example, C could index a set of linear functions ¢y (x) = w - x. Intuitively, our goal is to use

some c € C to predict the mean label function Ep,_ [y]. When there exists ¢* € C with

c*(x) =Ep,, [y] forallxe X, (1)

we say that we are in the realizable setting; when no such ¢* exists, we are in the agnostic setting,
where we want to compete with the best classifier in C at predicting Ep,, [y]-

We evaluate the quality of predictors via a loss function ¢ : R x ) — R. Our goal is usually to
minimize the classification loss, i.e., output a classifier ¢ € C such that

E(x7y)~D [E (C(X)7 y)] ~ gléré E(x,y)ND [é (C* (X)v y)] . (2)

A few examples of popular loss functions £(p, y) include the 0-1 loss, squared loss, and cross entropy
loss, which we define below respectively:

lptys (=), (1—y)log (11])) +ylog (;) . (3)

Proper losses. A basic desiderata of loss functions is that in the realizable setting, it should
be optimal to output the ground truth c¢*. Losses satisfying this property are called proper losses.
Formally, a proper loss should have the property that for all p* € [0, 1],

p* e argminge o 11Ey~Bern(p*) [£(p, )] - )

In (4), we use Bern(p) to denote the Bernoulli distribution over ) with mean p. Somewhat
remarkably, there is a complete characterization of proper losses for binary classification in terms



of convex functions. To describe it, we introduce some notation. For p € [0, 1], let

H(p) = EyNBern(p) V(Pa y)]

= qrer%(l)fll] {Ewacrn(p) M(‘L y)]} (5)
= min {(1 - p)e(q,0) + pl(q,1)}.

The second equality above holds because ¢ is proper, i.e., by (4). The consequence of applying the
transformation (5), H, is called the entropy of £. For example, if £ is the cross entropy loss,

t(p,y) = (1 —y)log <1ip> + ylog (;) = H(p) = (1—p)log <1ip> +plog (;)

1

Similarly if £ is the squared loss, then H(p) = p(1 — p). In both cases, p = 5 maximizes entropy.

Next, H : [0,1] — R is concave, as the minimum of linear functions of p (Lemma 1, Part III). We
define w := —H to be its (convex) negation. By Lemma 1, Part III, and the definition (5),

W'(p) = —H'(p) = £(p,0) — £(p, 1). (6)

We are now ready to give our proper loss characterization.

Lemma 1. Let ¢ :[0,1]x{0,1} — R be a proper loss (i.e., € satisfies (4)), and define H : [0,1] — R
as in (5). Then for all (p,y) € [0,1] x {0,1},

C(py) = —w(p) —w (p)(y —p) (7)

Conversely, for any conver w : [0,1] = R, the loss £:[0,1] x {0,1} defined in (7) is proper.

Proof. First suppose that ¢ is a proper loss. We directly compute that

—w(p) =W (p)y—p) = H(p) + ({(p,1) = £(p,0)) (y — p)
=pl(p,1) + (1 —=p)l(p,0) + (£(p,1) = £(p,0)) (y — p)
= (1-y)L(p,0) +yl(p,1) = L(p,y).

In the first line, we used (6). This proves the first statement; we move onto the second. Suppose
that w : [0,1] — R is convex. Then we should have that if y ~ Bern(p), then p € [0, 1] minimizes
E[¢(p,y)]. Indeed, defining ¢ as in (7),

Ey~Bern(p) [£(q;9) — £ (p, )] = —w(q) + w'(¢)(q — p) + w(p) + ' (p)(p — p)
= w(p) —w(q) —w'(q)(p — q) = Du(pllg) >0,

where we used that Epem(p)[y] = p, and applied convexity in the last line. O

Our derivation gives a way to convert any convex w : [0, 1] — R into a proper loss function via (7).
In fact, it is often nicer to describe this transformation starting from a conjugate convex function
w* : R = R, such that its derivative o := (w*)’ maps R — [0,1]. By the theory of convex duality
(i.e., Corollary 1, Part III), we have that if o(t) = p and o is one-to-one, then

pt =w(p) +w"(1).

Thus, we could alternatively parameterize (7), starting from o : R — [0, 1], as

—w(p) + pu () — g (p) = (1) — gt = / (o () — y)dr, (8)

where ¢ := w'(p). The transformation (8) from o into a proper loss is actually the more conventional
viewpoint from the perspective of optimizing generalized linear models. In this context, ¢ : R —
[0,1] is called the link function, and the loss in (8) is called the associated matching loss.



Generalized linear models. We can now develop the theory of generalized linear models
(GLMs) for binary classification. A GLM makes predictions from features x € R? using a lin-
ear predictor w € R?, combined with a link function o : R — [0, 1]. It posits that

o(w-x)=Eyp,, [yl 9)

is the mean function governing the labels. We require that the link function is monotone nonde-
creasing: this arises from o being derived in (8) as the gradient of a convex function w*.

The model (9) is quite flexible; it only asks that the data have a “preferred direction” w, and that
the more correlated x is with w, the more likely the label equals 1. When o is known and fixed,
(9) is the GLM with link o; otherwise, if o is treated as a flexible part of the model, (9) is called
a single-indexz model (SIM). SIMs are an example of a semiparametric model family: the linear
function w is the parametric component, and the arbitrary monotone function o : R — [0, 1] is the
nonparametric component which must be jointly estimated from data, alongside w.

In the remainder of the lecture, we focus on learning a realizable SIM in the binary classification
setting, i.e., where (9) holds for some unknown (o, w). We discuss various extensions, especially
to the agnostic setting, in Section 3. Briefly, we mention that there is work on generalizing this
lecture’s techniques to more complex settings involving multiple classes or linear predictors. For
example, the theory developed this section generalizes to proper losses on multiclass predictions,
where the label y of each example belongs to the set {e;};cx (see, e.g., Chapter 14 of [Duc23]).
Moreover, a topic of significant interest in the theory of neural networks (among other applications)
is multi-index models, where predictions given features x € R? depend on a designated subspace
represented by W € R¥*: for a survey of recent work in the area, see [DKK*24].

We now set up some specific notation for the rest of this lecture. Let o : R — [0, 1] be a monotone
nondecreasing (henceforth in this lecture, monotone) link function. Following (8), we denote the
matching loss associated with o, introduced by [AHW95], via

zmgwyw=[;ww»—mdr (10)

For example, if o(t) = ¢, then ¢y, , is the squared loss (up to a constant); if o(t) = li%% is the

logit, then 4, »(t,y) = log(1 +exp(t)) — yt. We summarize some important properties of ¢m , here.

Lemma 2. Let 0 : R — [0,1] be a monotone link function, and define lm o as in (10). Then

0 0?

agm,a (t,y) = U(t) - Y, @em,a (t7y) = U/(t)' (11)

Consequently, lm +(t,y) is convex in t, and if o is B-Lipschitz, then lyn - (t,y) is B-smooth in t.
Finally, for any p € [0,1] and t € R with o(t) = p, we have

te aJrgl’ninteREwaern(p) [gm,o(tv y)] . (12)

Proof. The first conclusion (10) follows from a direct calculation. Because ¢’(t) > 0 for all ¢,
convexity is immediate (if o is not differentiable, convexity follows because the first derivative
o(t) — y is monotone in t). Moreover if o is S-Lipschitz, then for any ¢,¢ € R, we have

a a 12 /! !/
—_— —_— —_— = —_ < -
oo (69) = 5ot (19)] = lo(t) = o)) < At — |

i.e., {m,o(t,y) is smooth in ¢t (Definition 3, Part II). Finally, if o () = p, then (12) follows from

0
aEyNBern(p) [Km,a(ta y)] = EyNBern(p) [J(t) - y] =pP—P= 0.

O

Lemma 2 gives us the regularity properties needed to use the tools developed in Part II and III to
efficiently optimize ¢, ,. We note that in the realizable SIM setting (9), the predictor ¢(x) = w-x
optimizes ¢m », because (9) implies the precondition for (12) to hold. The key algorithmic challenge



in learning SIMs is that we do not know o, which must be jointly estimated. We explore this
observation in Section 3 when we design an algorithm for learning realizable SIMs.

Finally, to draw a connection to our earlier discussion on proper losses, observe that for any
monotone and one-to-one link function o : R — [0, 1], we can define an associated loss

loo (P, y) = lmo (U_l(p)»y) . (13)

We call ¢, , the proper loss associated with o. Note that ¢, , takes as inputs values in [0, 1] x [0, 1].
We can view o as a function that takes t € R (the “unlinked space”) into [0, 1] (the “linked space”
of predictions). Under this one-to-one mapping, Lemma 2 implies that

pE argminqe[o,l]EyNBern(p) [Ep,a' (Q7 y)} )

justifying the name proper loss. Indeed, tracing back through our earlier derivation shows that

{5 is exactly the function defined in (7), under the mapping w’ = o~ .

Interestingly, properties of the matching loss (8) allow us to optimize nonconvex losses for measuring
the prediction error of a SIM. For example, consider the squared loss of a predictor x — 6(W - x),
where (x,y) ~ D follows the realizable SIM (9):

Exa~p [(6(W-x) = y)z] : (14)

The squared loss (14) is one of the most popular loss functions in statistical learning settings, due
to its various beneficial properties, e.g., the fact that it is proper. Unfortunately, even in the GLM
setting where 6 = o is known and we are only trying to optimize over the linear predictor w,
the objective (14) can be quite far from convex: indeed, in the agnostic setting, even simple link
functions such as the logit induce square losses with exponentially many local minima [AHW95].
Nonetheless, by using the matching loss (8) as a convex surrogate, in Section 3 we will give learning
guarantees even under the squared loss objective. This broader idea of using convex surrogates to
drive progress has been very influential in the design of machine learning algorithms.

2 Isotonic regression

Before giving our full algorithm for learning SIMs, in this section, we first develop a simple non-
parametric estimation method: the pool-adjacent-violators (PAV) algorithm [ABET55, GW&4].

The PAV algorithm solves a one-dimensional curve fitting problem called isotonic regression. In
this problem, we are given inputs {y;}ic(n) C R x {0,1}. Our goal is to output {p;};cp, solving

min Z (pi — yi)2 subject to p1 < p2 < ... < py. (15)
{pi}ien)C[0,1]
i€[n]
Intuitively, this problem arises in our SIM-learning algorithm because given a candidate linear
predictor w, we wish to find the link 6 : R — [0, 1] that best fits our observations (in the squared
loss), subject to being monotone. However, (15) is also of independent interest in one-dimensional
nonparametric estimation, if we aim to compete with the family of monotone classifiers.

PAV. We now describe the PAV algorithm for solving (15). The algorithm maintains a partition
P of [n] into consecutive pools Pi, ..., Ps, so that the indices in each P; are all smaller than the
indices in Pj4. Initially, s = n and each P; = {j}. For any pool P, we define

e LN,
yp = |P| Zyz

icP

to be the average label in the pool. The algorithm terminates as soon as yp, < yp,,, for all
i € [s — 1], i.e., the pools have average labels in monotone order. At termination, it returns the
label p; = yp for all indices ¢ € P, looping over all pools P € P, which is feasible for (15).

Before termination, the PAV algorithm repeatedly finds a pair of adjacent pools P; and P,1; such
that yp, > yp,,. It then merges these pools into a single pool, updating s <— s —1. As each merge
decreases the pool count by 1, PAV can straightforwardly be implemented in O(n?) time.



By being more clever, we can obtain a faster runtime of O(n). Roughly speaking, the algorithm
maintains a list of pool sizes and averages, so that merging adjacent pools takes O(1) time. Further,
the algorithm maintains a pointer to the j*® block, with the invariant that the first j pools have
monotonic averages. We can amortize the cost of fixing this invariant to be O(1) per pool merge,
and as long as the invariant is maintained, detecting a new violation or advancing the pointer j
also takes O(1) time. Overall, this costs O(1) time each time the pool count decreases, for an
overall O(n)-time algorithm. For more details, we refer the reader to Section 4 of [GW84].

Properties of PAV. We next show that PAV optimally solves (15). To begin, we describe two
important properties of its output. The first is that PAV always yields a calibrated predictor.

Definition 1 (Calibration). Let D be a distribution over (x,y) € X x{0,1}, and let p : X — [0, 1]
be a predictor. We say p is calibrated with respect to D if for all v € [0, 1],

Exy)~p [y | p(X) = 0] = v.

Asking p to be calibrated is asking that, conditioned on p(x) = v, the observed outcome y | x
should average out to v. In other words, a calibrated p gives predictions that can be understood as
probabilities. Calibration is a well-studied, basic interpretability measure, and is closely-related to
our discussion in Section 1; for instance, postprocessing any predictor to be calibrated decreases any
proper loss, essentially by applying (4). Understanding the calibration of modern neural networks
is an ongoing research direction, see e.g., [GPSW17]. Here, we only need the following simple fact.

Lemma 3. Let p: X — [0,1] be the predictor resulting from PAV run on inputs {y;}icn) where
X :=[n], and let D be uniform over (i,y;) € X x {0,1}. Then p is calibrated with respect to D.

Proof. For every value v € [0, 1], note that p; = v only if ¢ belongs to a pool P with average label
yp = v. However, this clearly means E;cp,[y; | pi = v] = v, so p is calibrated. O

The other property of PAV we need is more subtle, and roughly translates to the requirement that
the residuals {p; — y; }ie[n] are anticorrelated with any monotone sequence.

Lemma 4. Let {u;}ic[n) be monotone nondecreasing, and let {p;}ic(n) be the result of PAV run on
inputs {Yi}icm). Then Zie[n] (pi —yi)u; > 0.

Proof. We begin by proving a much more general statement. Let P; be the set of pools (i.e.,
a partition of [n] by contiguous subsets) maintained by PAV after ¢ pool merges, so Py places
each index in a singleton pool. We claim that for all iterations ¢ before termination, any pool
P =] € P, and any index j € P, the following inequality holds:

Z (yi —yp) = 0. (16)

=/

In other words, pool prefix averages always exceed overall pool averages, at any point in the
algorithm and for any pool prefix. The base case t = 0 is clear, as y; = gp for all P = {j}. Next,
consider some iteration ¢ > 1, and suppose (16) holds for P € P;_;. Suppose that in this iteration,
adjacent pools P = [¢,r], P’ = [¢' =r + 1,7'] € P;_; were merged to form pool Q@ = PU P’.

To complete the induction, we need to show that (16) holds for P + @, as this is the only pool
that has changed. Observe that yp > yp/ implies

_ r—=Ll41 +r’—€’—|—1, € (o, 5p)
yQ—r,7€+1yP r’—£+1yP' yp,yp)-

Thus, for all j € P, we have by induction that

> wi—10) =Y (y; —yp) 2 0. (17)
=

=L i



It remains to consider j € P'. If j =1/, (16) with P < @ is clear; otherwise, for j <7/ — 1,

’
T

S wi-v0) =12 S (- g0)

T
i=t L
Py + 1 r’ B
> —% Z (Z/z - yP/) (18)
J i=j+1

J

> (yi —gpr) > 0.

— 9 A,
J =17 "y

i1 -1

!/

r

The first and third lines above used the definitions of g and yps as pool averages; the second line
used our earlier conclusion §pr < §g. Thus by combining (17) and (18), we have shown (16).
Now the claim follows from (16) and monotonicity of {w;};e[,], upon applying the Abel transfor-
mation. For any pool P = [(,r] at termination, let s,—1 := 0, and let s; := >7_,(y; — yp) > 0 for
all j € P (where the inequality holds because of (16)). Then,

T T

> =y =Y (T —yi)u;

j=t j=¢

I
]

Sj (Uj+1 - Uj) + UpSp—1 — Up41Sr
L

<.
s

sj(ujp1 —uj) >0,

<.
I
~

where we used that s, = 0 in the third line. We can now sum over all pools. O

PAYV solves isotonic regression. We can combine Lemmas 3 and 4 to prove a strong statement
about PAV’s optimality for isotonic regression, first observed in [BP13|. In particular, we can show
that PAV is optimal for (15) when the squared loss is replaced by any proper loss. The case of the
squared loss is recovered by setting the link o in Theorem 1 to be the identity function.

Theorem 1. Let o : R — [0,1] be an arbitrary monotone, one-to-one link function, and define the
associated proper loss £y, : [0,1] x {0,1} = R as in (13). Let {p;}icm) be the result of PAV run
on inputs {Yi}icm) € {0, 1}". Then for any {v;}icpm) C [0, 1] satisfying v <va < ... < vy,

Z oo (Pisyi) < Z lo.o(Vi, Yi)-
i€[n]

i€[n]

Proof. Following the notation (8), we prove that for any {t;};c,) C R with t; <ty < ... <,
Z Em,o(a_l(pi)ayi) < Z Km,a(tzﬁyi)- (19)
i€[n] i€[n]

The desired claim follows by letting t; = o~ (v;) for all i € [n].

Let D be the uniform distribution over (i,y;) for i € [n]. Let D be the distribution over (i,y) €
[n] x {0,1} which first draws ¢ € [n] uniformly at random, and then samples y ~ Bern(p;). By the
definition of proper losses (i.e., by applying (12) to each pool),
E(iyy)Nﬁ Vm,a (Uﬁl(pi)vy)] < E(i,y)wﬁ [lm,o (t5,y)] - (20)

Moreover,

E(i)~D [l (07 (00):y)] =iy o (077 (00),9)] = Eimpuie 1) [(00 — wi)o ™ (02)] = 0, (21)

E(i,y)Nﬁ [gm,a (t'ia y)] - E(i,y)wD [Em,o (tiv y)] = EiNunif. [n] [(yz - pi)ti] < 0.

where the first line used the definition of ¢, » (see (10)) and Lemma 3, and the second line used
the definition of ¢, , and Lemma 4. Thus, by summing (20) with (21),

E(i,y)N’D Vm,d(a_l(pi)v y)] - E(i,y)N'D [gm,cr (tia y)] < 0;
which is the claim (19) to be proven, upon multiplying both sides above by n. O



3 Isotron

In this section, we consider the problem of learning a realizable SIM with respect to the squared
loss, (14). Let D be a distribution over X x {0, 1} for X C R?, and define Dy, D, x as in Section 1.
For clarity, in this section we use o, : R — [0, 1] to denote a designated monotone link function,
and w, € R? to denote a designated linear predictor, such that for all x € X,

o (Wi x) =Eyop,, [y]. (22)

In other words, there exists a SIM (o4, w,) that exactly predicts the mean label given features,
(22). To simplify our statements, we use the following notation in this section:

Zm,o’ (W; D) = E(x,y)wD [gm,o' (W - X, y)] )
o (WD) = Egeypon | (0 (w %) = 1)°] (23)

lsqo (W; D) :=lsqo (W; D) — leq.0, (Wi; D).

The definition of ly » in (23) is motivated by a bias-variance decomposition:
2

gsq,g (W,D) = E(x,y)ND {(0’ (W . X) — y)2:| — E(x,y)ND [(0'* (W* . X) — y) ( 4)
2

= Egegpon (0 (W %) = o (wa - %))
In other words, fsq . is the explainable error that is caused by incorrect predictions o(w - x) #
04 (W, - x), and lsq o — fsq,» is the squared loss inherent to the problem due to label noise.

As previously described, in general the squared loss is a nonconvex function of the linear predictor
w (even holding the link o constant). However, the matching loss {m , of any link function o is
convex (Lemma 2), so we can hope to minimize it efficiently via gradient descent. This has an
implication on minimizing the squared loss, in the realizable setting.

Lemma 5. For > 0, let Sg be the set of monotone 5-Lipschitz o : R — [0, 1], i.e.,
Sg:={0:R=1[0,1]|0<o(t)—o(t') < B{t—1") for allt' <t}.

Then if D, a distribution on X x {0,1}, satisfies (22) for o, € Sz, we have for any w € R? that

1
bmo, (W;D) = lmo, (Wi; D) > %KSCLU* (w;D). (25)
Moreover, for any invertible 6 € Sg, we have that
_ 1
E(x,y)~D [(U (W x)—y) (0* Yo (w-x)) —wy - x)] > Bésq,g (w; D). (26)

Proof. First, we expand:

lno, (WD) = b, (Wi; D) = Exy)p {/W'x (0x (T) — ) dT:|

W X

~Een, | [ (a0 o () ]

W, X
1

> o, [0 (W) = 0 (w, )]

26

which proves (25) upon applying (24). The only inequality above used co-coercivity of the gradient,

i.e., letting w} be the S-smooth antiderivative of o,, we have w}(t) — wi(t') — o (')t — ') >

ﬁ(o*(t) — 0,(t"))? for all t, ' by Corollary 2, Part III. Next, we similarly have
Eey)~p [(0(W-%x) —y) (0, (0 (W-%)) = W, - x)]

. [(U (W-X) — 0y (Wy - X)) (0;1 (o (w-x)) —w, x)]



proving the second claim. The only inequality used o, € Sg, which means that for all ¢,#/,

(0x(t) = ou(t)) (t =1') = %( L) —au(t)”.

O

Under the realizability assumption (22), the claim (25) shows that the minimizer of ¢y, ,, also in-
duces the global minimizer of the squared loss. Thus, in the GLM setting where the link function
0. € Sp is treated as known and fixed, we can optimize the squared loss in w simply by opti-
mizing ¢, », (+; D), a smooth convex function. Indeed, achieving 2fe loss in ¢y, », implies loss € in
lsq.0, (3 D), via (25). To obtain a near-minimizer for ¢, ,, (-; D), any smooth convex optimization
algorithm will do, e.g., Theorem 3, Part IT or Theorem 2, Part V.

We now discuss the SIM case, where o, is unknown. First, it is worthwhile to compute the form
of Vil »(+; D), the gradient used in these optimization methods. By the chain rule,

Vimo (W;D) = Eyynp [(0(W-x) —y)x] = Exp, [(0 (W %) — oy (Wi -x))x],  (27)

where the last line used (22). When o is the identity link and D is uniform over the rows of a
regression matrix X = {X;}ic[n) € R"*4 modeling Xw = y, the gradient of the (least squares)
matching loss is V(3| Xw — y|13) o< Eju e m][(W - X; — yi)x;], in agreement with (27).

We now present an elegant SIM learning algorithm called the Isotron due to [KS09], later explored
in more depth by [KKKS11|. Briefly, the main idea is to alternate between learning w via gradient
descent on ¢, , (with respect to the current guess of o), and learning o via the PAV algorithm in
Section 2 (with respect to the current unlinked predictions w - x).

Theorem 2. Let D, a distribution over X x {0,1} for X C RY, satisfy (22) for o, € S, and let
[Exr, o], < 2 o — v < 2
for some wq € R, Consider the following iteration: for all0 <t < T, let

o1« argmin, s, [Eqoyn [(0 (Wi %) =1)°]],

Wit1 < Wi — NV o, (W3 D).
Then for n = ﬁ and T > w, we have

lsqo, (W3 D) < Lo o, (Wi; D)+ € for some 0 <t <T.

Proof. First observe that we are playing standard gradient descent on the {w,}o<i<7 iterates, so
that Theorem 2, Part II implies the regret bound

1 _ R 2
el Z (Vlmo,(Wi; D), Wy — W) < ﬁ + T [Vlm,o, (we; D[ - (28)
0<t<T 0<t<T

We can bound the right-hand side above, recalling the formula (27), via

Vb0 (w; D)2 = sup, Exep, [(0 (W-X) — 0, (W, - X)) (x - x)]*
V=1

< suFE)d Ex-p, [(0 (W %) — 0y (W, - X))?] Exp, [(x-V)?] (29)
V=t

<lsqo (W;D) HEX~Dx [XXT] Hop < L, (W; D).
To bound the left-hand side of (28), we further have for all 0 <t < T that
(Vi (W53 D), Wi — Ws) = gy (001 - X) — ) (Wy - % — w, - )
= Ex,y)~D [ (oe(wy - x) — ) ( x— o, (o (wy x)))}
+ Eaop [(01(wi - x) — ) (04" (01 (Wi - X)) — W, - X) | (30)
>Exy>~o[o -x) =) (07! (01 (Wi - X)) — Wy - X) ]

Z Bgsqvat (Wt,D) .



In the second-to-last-line above, we used that o, is calibrated! and anticorrelated with monotone
sequences (Lemmas 3 and 4), so

Ex.g)~p [(06(Wi - %) = y) 0, (01(wy - %))] = 0, By (04 (Wi - X) = y) Wy - x] > 0.
We also used (26) in the last line of (30). Plugging (29) and (30) into (28), we obtain

1 S BL?R?
v Z gsq,at (WtQ,D) < y
25T 0<t<T 2r

which gives the claim upon rearranging and choosing the iterate with smallest lsq o, (W; D). O

Theorem 2 proves that the semiparametric problem of learning realizable SIMs in the squared loss
is polynomial time tractable. We mention a few extensions of Theorem 2 to more general settings.

Finite-sample bounds. Perhaps the biggest shortcoming of Theorem 2 is that, as stated, it
does not yield an implementable algorithm due to its requirement of evaluating population av-
erage quantities such as V&, ,(w; D). To give guarantees on learning SIMs from a finite dataset
{(xi,¥i)} ~iid. D, we must appeal to generalization bounds. The topic of generalization for infinite
function families (e.g., the family of predictors x — o(w - x)) is outside the scope of this course.
However, we got a taste for this concept when proving net-based bounds on the conditioning of
random Gaussian matrices in Proposition 1, Part IX and Lemma 2, Part XII.

To prove a finite-sample analog of Theorem 2, the main challenge is to argue that the link function
fitting step used to compute o; is well-approximated via samples. The standard approach for
doing so (e.g., as in [KKKS11]) goes through the empirical Rademacher complezity, which roughly
measures the worst case deviation from a function evaluated on samples to its expectation. This
in turn can be bounded via chaining appropriately-sized nets over the function class. We refer the
reader to the excellent resources [vH16, Wu20| for accessible introductions to this topic.

Agnostically learning SIMs. A challenging extension to Theorem 2 asks for a learning result
(e.g., in squared loss) with respect to the best-fitting SIM, under an arbitrary distribution D over
X x {0,1} where (22) need not hold. That is, we want to return (o, w) € Sg x R? such that

lsq o (W; D) = (g*,w?)lierglsﬁde lsqo, (Wi D). (31)
If our notion of approximation is multiplicative error, standard cryptographic assumptions imply
that this agnostic learning goal is unachievable in polynomial time, even when the link function
0 = 04 is known and fixed [DKMR22]. Interestingly, a recent line of work shows that under certain
distributional assumptions, e.g., concentration and anticoncentration of Dy and regularity of the
link function, multiplicative approximations of the form (31) are possible, even in the SIM setting
[DGK 20, WZDD23, ZWDD24]. These results roughly proceed by characterizing the landscape
of squared loss under distributional assumptions as having certain proxies for strong convexity,
outside a neighborhood of the optimal choice of w,. This landscape structure then implies that
any highly-suboptimal candidate w can be improved via gradient methods.

Omniprediction. The aforementioned results show that we can understand the performance
of gradient methods up to a constant multiplicative factor, for agnostically learning SIMs. Can
we give a tight result on agnostically learning SIMs, perhaps of a different nature than square
loss minimization? Modern work on supervised learning defined the notion of omniprediction
[GKR*22], where a single predictor is simultaneously near-optimal for a family of loss functions
against a set of candidates. In fact, Theorem 1 is an example of such an omniprediction guarantee,
which says that PAV optimizes all proper losses against all monotone predictors.

Recently, [GHK ™23, HT'Y25| showed that omniprediction for SIMs is achievable, even agnostically.
Roughly, the omniprediction guarantee they show is that a single learned predictor simultaneously
minimizes all matching losses against linear predictors. Perhaps surprisingly, the omnipredictor
in [HTY25] simply postprocesses the iterates of Isotron (Theorem 2) itself, highlighting a deeper
connection between nonparametric curve-fitting problems and supervised loss minimization.

1A limiting argument shows that under mild regularity assumptions, o+ is well-approximated by the PAV solution
to a finite sample of w - x for x ~ Dx. The PAV solution for finite samples is calibrated (Lemma 3) so o is as well.
A similar argument holds for Lemma 4 at a population level.



Source material

Portions of this lecture are based on reference material in [Duc23, Kan23|, as well as the author’s
own experience working in the field. We would like to thank Lunjia Hu and Chutong Yang for
many helpful conversations related to this lecture.
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